
2786 J. Am. Chem. Soc. 1991, 113, 2786-2787 

surface carbonyls are several orders of magnitude more reactive 
in oxidative addition reactions with silanes than non-carbonyl-
containing nickel samples.17 

Destruction of solvent by the metal particles has been inferred 
from analysis of reaction products'8 in several of the methods used 
in producing active metal powders. Auger spectroscopy of nickel 
powders subjected to ultrasonic irradiation has indicated the 
presence of both surface carbon and significant quantities of 
surface oxygen (Ni:0 rations of l:2).4 

The magnitude of the surface Raman signal tempts one to infer 
some surface enhancement of the Raman signal, and evidence for 
surface enhancement of the Raman spectrum for molecules ad­
sorbed on nickel has precedent in the literature.19,20 In the absence 
of an excitation profile, this conclusion is unwarranted, and the 
magnitude of the signal is attributed to the large surface area seen 
in the morphological experiments13 and the large quantity of 
surface oxygen observed in the Auger experiment.4 
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It is reported that the enantiofacial selection in the Katsuki-
Sharpless asymmetric epoxidation1,2 is opposite for allylic and 
homoallylic alcohols.3,4 Since C2-symmetric DL-l,2-dialkenyl-
ethylene glycols (1) may be regarded as either allylic or homo­
allylic substrates, we were intrigued by the possibility that an 
opposite stereogenic effect between the allylic and homoallylic 
relationships might synergistically amplify the enantiofacial se­
lectivity in the chiral epoxidation of these symmetric substrates5 

(Scheme I, eq 1). We therefore examined the reaction of optically 
active C2-symmetric (17?,2/?)-l,2-divinylethylene glycol6 [(R,-
R)-4], which led us to make a new and unexpected discovery 
relative to the Katsuki-Sharpless kinetic resolution process. 

Since the empirical rule1"4 embodied in asymmetric epoxidation 
predicts that IR,2R glycol [(R,R)-4] would react at a much faster 
rate in the presence of diisopropyl L-(+)-tartrate [(+)-DIPT] to 
furnish R epoxide [(2/?)-5] and/or R,R diepoxide [(2R,5R)-6], 
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we first carried out the reaction of (R,R)-4 with ferf-butyl hy­
droperoxide (TBHP) in the presence of a stoichiometric amount 
of (+)-DIPT and Ti(O-I-Pr)4 and 4-A molecular sieves7 (Scheme 
I, eq 2). However, the reaction did not occur and the starting 
material was recovered unchanged. Surprisingly, when (-)-DIPT 
in place of (+)-DIPT was used (Scheme I, eq 3), the reaction took 
place facilely to afford S monoepoxide [(2S)-I] accompanied by 
a minor amount of S,S diepoxide [(2S,55)-8] with 1.2 equiv of 
TBHP (Table I, entry 1) and the diepoxide [(2S,5S>8] accom­
panied by a minor amount of the monoepoxide [(2S1)-?] with 3 
equiv of TBHP (Table I, entry 2). Correlation of the products 
with diethyl L-(+)-tartrate8 and D-mannitol' established their 
stereochemistry unambiguously. This inversion of enantioselec­
tivity and diastereofacial selectivity was also observed in the kinetic 
resolution of racemic DL substrate10 [(±)-4] in the presence of 
(+)-DIPT, which furnished a mixture of R monoepoxide [(2R)-I], 
RJi diepoxide [(2R,5R)-S], and unreacted glycol [(R,R)-4] (Table 
I, entries 3 and 4). 

Interestingly, the monobenzyl ether" of optically active DL 
substrate [(R,R)-4] was epoxidized only in the presence of 
(+)-DIPT to afford the monoepoxide with the R configuration, 
matching the prediction of the empirical rule (Table I, entry 5). 
When meso-1,2-divinylethylene glycol10 [(meso)-4] was epoxidized 
for comparison in the presence of (-H)-DIPT, the reaction occurred 
again in an unexpected mode to afford a 7:1 mixture of diaste-
reomeric monoepoxides (25)-9 and (2i?)-10 (Scheme II) (Table 
I, entries 6-8), which could be separated after conversion into 
acetonides and correlated with (S)-L7-benzylglycidol12,13 to establish 
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Table I. Katsuki-Sharpless Asymmetric Epoxidation of 1,2-Divinylethylene Glycols 
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entry 
1 

2 

3 

4 

5 

6 

7 

8 

substrate 

DL-(R,R)-4 

DL-(R,R)-4 

DL-(±)-4 

DL-(±)-4 

^OBn 

meso-4 

meso-4 

meso-4 

catalyst (equiv) 
Ti/tartrate° 

1.0/1.20^ 

1.0/1.2« 

1.0/2.0* 

1.0/2.0» 

1.0/1.2*-* 

0.4/0.8* 

1.0/2.0* 

1.0/2.0* 

TBHP 

1.2 

3.0 

2.0 

10 

5 

10 

10 

30 

60 (82) 

time, 
h 

10 

20 

10 

8 

12 

114 

72 

90 

product, %' 
(corrected yield) 

(2S)-7, 32 (42) 
(ZS,5S)-8, 19 (25) 
(2S)-7, 9 (10) 
(2S,5S)-8, 35 (40) 
(R,R)-4, 47 
(2R)-I, 11 
(2R,5R)-S, 6 
(R,R)-4, 36 
(2*)-7, 3 
(2R,5R)-$, 12 

HO-
-OBn 

9, 28 (60) 
10, 4 (9) 
9, 45 (53) 
10, 6 (8) 
9 ,57(71) 
10, 7 (10) 

opt. yield, 
%ee 

- 1 0 C 
-100« 
-100* 
-100* 

-100* 
~100* 

-88^ 
-100* 
-100* 

-100« 

- 9 0 * 
- 9 0 * 
- 9 0 * 
- 9 0 * 
- 9 0 * 
- 9 0 * 

°D-(-)-DIPT. *L-(+)-DIPT. 'Due to water solubility, the oxidation products could not be isolated completely from the reaction mixture. Cor­
rected yields were estimated on the basis of consumed starting material. dReaction did not take place with L-(+)-DIPT. 'Estimated by 1H NMR 
analysis (500 MHz). ^Estimated by specific rotations. 'Reaction did not take place with D-(-)-DIPT. * Estimated by 1H NMR analysis (500 MHz) 
of MTPA esters. 
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counterpart (meso-4) (Scheme III). 
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their stereochemistry unambiguously. 
To explain the unexpected stereochemical outcome encountered 

in the Katsuki-Sharpless asymmetric epoxidation of both DL and 
meso substrates, we assume involvement of the hexacoordinated 
complexes, 11 for DL-4 and 12 for meso-14. In both of these, a 
near perpendicular alignment of the olefin axis and the epoxy 
chelate ring plane14'15 may be preserved, leading to the corre­
sponding epoxides in a stereospecific manner. Although the in­
volvement of a dimeric complex,20,16 such as 13, may also account 
for the stereochemical outcome observed in the DL substrate, a 
similar dimeric complex having the optimal stereoelectronic ar­
rangement leading to (2S)-7 seems unlikely from the meso 

(13) Takano, S.; Iwabuchi, Y.; Ogasawara, K. J. Chem. Soc., Chem. 
Commun. 1989, 1371-1372. 

(14) Cf.: Corey, E. J. /. Org. Chem. 1990, 55, 1693-1694. 
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The accurate determination of interproton distances, as obtained 
from 2D nuclear Overhauser effect experiments (NOESY), is of 
primary importance in the determination of solution-state protein 
structures by NMR, while 2D /-correlated experiments (COSY) 
are crucial for the assignment of specific spin-system resonances.1"3 
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